
Data Collection without Privacy Side-Effects

Konark Modi
Cliqz

konark@cliqz.com

Josep M. Pujol
Cliqz

josep@cliqz.com

ABSTRACT
The standard approach to collect users’ activity data on the
Web relies on server-side processing. This approach requires
the presence of user-identifiers in order to aggregate data in
sessions, which leads to tracking. Server-side aggregation is
bound to produce side-effects because the scope of sessions
cannot be safely limited to a particular use-case. We provide
several examples of such side-effects.

To preserve privacy we propose an alternative approach
based on client-side aggregation, where user-identifiers are
not needed becasue sessions only exist on the client-side
(i.e. the user’s browser). We demonstrate the feasibility
of this approach by providing an implementation of a track-
ing agent – green-tracker – able to gather the data needed to
power a service functionaly equivalent to Google Analytics.

1. INTRODUCTION
The data processing aspect of Big Data has received a

lot of attention; resulting in many great technologies like
Hadoop, Spark, GFS as well as advances in networking and
storage, etc. On the other hand, not so much attention has
been paid to where that Big Data comes from.

The industry modus operandi can be described as collect-
all-you-can, and this behavior is not only accepted but en-
couraged. If one considers data as the energy to power ser-
vices, then one will naturally seek to hoard it. This ap-
proach to data collection, however is dangerous especially
when data involves humans. For cases like Large Hadron
Collider at CERN there is no discussion on whether more
data is better. Particle collision data is unlikely to have side-
effects, and even if there were any, particles are not likely to
complain. However, when the subject of data collection in-
volves human actions on the Web, side-effects are something
to be considered seriously.

What is a side-effect? In simple terms, a piece of knowl-
edge that can be learned from data analysis which was nei-
ther intended nor expected, and that poses a risk to the
privacy of the subjects of the data collection.

2. SIDE-EFFECTS ARE UNAVOIDABLE
Practitioners in data collection have no desire for such

side-effects. Unfortunately, the current approach to data
collection, where aggregation only takes place on the back-
end of the collector, makes them unavoidable.

Let us illustrate this point by analyzing one of the biggest
data collectors in the Web: Google Analytics (henceforth
GA). According to [2] GA’s tracking agent – the JavaScript
that collects and send the data to GA’s backend – is found

in more than 44% of the page loads of users in Germany;
9 out of 20 times when someone in Germany loads a Web
page in a browser or follows a link, GA will receive a signal
of such an event. GA has a wide reach but at the same
time, or rather because of it, they also take active measures
to preserve privacy. GA uses no strong or persistent user
identifiers. Additionally, GA carries out sanitization of data
sent by its tracker, removing elements that could be Per-
sonal Identifiable Information (PII). From all trackers that
we have analyzed GA is the most privacy friendly one, and
yet, privacy of the users is compromised.

GA offers a wide range of analytics to site owners that
agree to add GA’s tracking script to their sites. Let us
describe two use-cases;

1. Count unique visitors to a page, i.e. are 10 page
loads from 10 different persons, or is it the same person
loading the page 10 times? Counting uniques is a basic
feature of any analytics framework.

2. Measure goal completions. Goals are the basic op-
erations in online marketing to see what was the trig-
ger that led to a particular action which we want to
monitor. For instance, did the download of an app
happen because the user read about it on a blog post
or because the user watched a promotional video?

To be able to satisfy the two use-cases some sort of session
of the user’s activity has to exist somewhere, how else can
GA know whether the user has already visited a page or if
it is a new one? Or how can GA track back what a user
did after a certain event occurs? Since GA tracking agent
does not keep any state, the user’s session can only be kept
on the collector’s back-end (on the server-side). To attribute
the signals received to the right user session, a user identifier
(uid) must exist.

This uid will allow GA to link enough signals to build
the session required to satisfy a certain use-case, e.g. to
calculate goal conversions. The big problem here is that
the uid can also be used to link all signals from the same
user, hence building a session which goes much beyond the
scope of the advertised use-cases of GA. The type of uid will
determine the size of the session. Strong and persistant uids,
like the ones used by Facebook, can build sessions spanning
to months or even years. The larger the session the more
likely it is that one of the records in the session contains
some Personal Identifiable Information from which the real
identity of the user could be revealed, which means once
a record is compromised the whole session is compromised
too. On the other a hand short and ephemeral uid can only

build a session for a long enough time to satisfy the intended
use-case, which may last minutes or perhaps hours. This
approach is used by GA and is much safer to the user’s
privacy.

The type of uid only affects the size of the session, which
plays into the trade-off between safety vs. data accuracy,
but this trade-off will not eliminate side-effects. As a matter
of fact, we can claim that one will always incur unde-
sired side-effects as long as server-side aggregation
is needed.

Strong claims require string evidence, unfortunately for
the users, this is easy to obtain. Let us keep focusing on
GA, although the same exercise can be repeated with other
companies with identical results.

Let us say that I visited a couple of pages: a) my personal
homepage at http://about.me/jmpujol, for which I logged
in. And b) http://www.depressionforums.org/forums/

forum/2-suicide-help-please-read-this, an extremely sen-
sitive page. In both cases GA tracking script is loaded and
the browser’s window resolution is sent (vp=1289x819). Feel
free to repeat the steps yourself by monitoring your HTTP

requests1. The browser’s window resolution is not a uid
on isolation since it changes when you resize your browser
window but when combined with the IP it can be used to
determine that two pages were visited by the same person.2

Knowing that the two pages were visited by the same person
should not be a problem because the user remains anony-
mous, right? Unfortunately that is not the case. After sign-
ing in to about.me GA started to receive additional data
for each page load (uid=ffd3...be73501). This data was
not present when not logged-in. Therefore, GA has the
ability to learn that the anonymous user is able to login
to http://about.me/jmpujol, thus breaking the anonymity
of the session. Consequently, I can have my real name asso-
ciated to the rest of the pages in that session, including the
page about a very sensitive topic.

It is unlikely that GA is really interested in this particular
fact about me, nonetheless, they have the ability to learn it.
We would like to stress that this is not a one-off case, there
are plenty of other examples. For instance, a) the landing
page after successful login of a popular dating site in Spain:
http://www.meetic.com/home/index.php, and b) the ana-
lytics page of your Twitter account: https://analytics.

twitter.com/user/solso/home, which also requires login.
The Twitter page is leaking to GA my identity on Twit-
ter since the page is only accessible to whoever can login
as solso. From the uid GA can derive that both pages
were visited by the same person, therefore, they can know
that solso on Twitter also has an account to a dating site
Meetic.

As stated above, as long as server-side aggregation of
users’ data is used, privacy side-effects are unavoidable. The
risk can be reduced, as GA does, but they still exists as we
just showed twice. The problem is not lack of care, at least
not for GA – we would not be able to extend the same consid-

1Open your browser dev console and the select network tab
and filter for google-analytics.
2We are not certain if GA uses the IP and browser’s window
size to build uids or if they use another method. In fact it
does not even matter. GA needs to have a uid to be able
to aggregate the data by user of the server-side in order to
satisfy their use-cases. How the uid is built only affect the
trade-off between data accuracy and safety.

eration to other trackers. The problem is that the approach
of collect-all-you-can and then aggregate on the server-side
is flawed.

The current approach to deal with side-effects is to es-
tablish strict data protection and data retention policies to
guarantee that sensitive data does not leak or is not mis-
used. This is not a solution to the problem, but merely a
contingency plan.

3. AN ALTERNATIVE APPROACH
At Cliqz we faced the similar problem when designing our

data collection system. We needed data from our users to
build our services: a browser with an integrated search en-
gine, news recommendation, security services such as anti-
phishing and anti-tracking and so on. However, we were very
troubled by the side-effects that come along with data col-
lection. That is why we created the Human Web [1], a novel
approach to data collection that relies on client-side aggrega-
tions rather than server-side. Since server-side aggregation
of users’ data is bound to produce side-effects, it is strictly
forbidden. Our data collection back-end only receives signals
from our users if and only if those signals require no further
aggregation. If aggregation at a user level is required, it is
carried out in the client itself. Thus no uid ever reaches
our data collection back-end. Apart from removing explicit
uids we have a complex set of heuristics to detect potential
implicit uids in the content of the signals. We also take care
of communication-level identifiable parameters by running
all signals through a set of anonymization proxies that strip
network information which could be used for fingerprinting.
We also consider and remove temporal and spatial correla-
tion caused by time of reception and order of arrival of the
signals. Thanks to the Human Web, we safely collect more
than 10M signals per day from our 500K users in Germany.
The biggest chunk of signals correspond to pages (6M daily)
followed by queries (2M daily)3. This paper, however, is not
about our Human Web, which has been in production for
more than a year. The motivation of this paper is to show-
case that our approach can be generalized to other use-cases
besides Cliqz. Let us take the simple use-case of counting
daily unique visitors to a page,

1) With the server-side aggregation approach, the back-
end will receive signals indicating visits to pages with a uid,
e.g. visiting https://about.me/jmpujol twice will send:

google-analytics.com/collect?.....dl=https://about.me/
jmpujol&.....&vp=1289x819.....&_u=AACAAAABI&.....

google-analytics.com/collect?.....dl=https://about.me/
jmpujol&.....&vp=1289x819.....&_u=AECAAAABI&.....

the backend will count the number of unique combinations of
page and the tuple IP and vp (that acts as uid) to determine
that the page was visited twice and there was one unique
visitor.

2) With the client-side aggregation approach the client
will only send a signal if it is the first visit on that day, and
do nothing if already sent. This will be the only data sent:

green-tracker.fbt.co/collect?{"ts":"201601291959","type
":"page_load,"p": "https://about.me/jmpujol"}

green-tracker.fbt.co/collect?{"ts":"20160129","type":"
page_visit_by_day", "p":"https://about.me/jmpujol"}

3This figures do not included telemetry signals, such as re-
sponse times or crash reports, which are not subjected to
privacy considerations.

http://about.me/jmpujol
http://www.depressionforums.org/forums/forum/2-suicide-help-please-read-this
http://www.depressionforums.org/forums/forum/2-suicide-help-please-read-this
http://about.me/jmpujol
http://www.meetic.com/home/index.php
https://analytics.twitter.com/user/solso/home
https://analytics.twitter.com/user/solso/home
https://about.me/jmpujol

green-tracker.fbt.co/collect?{"ts":"201601292120","type
":"page_load,"p": "https://about.me/jmpujol"}

Now to calculate the number of unique visitors the back-end
only needs to count the signals with type page_visit_by_day
and ignore the rest (which are used to count page loads). It
is the client itself who now guarantees that it will only send
the unique visitor signal once and only once per day page.
Therefore there is no need to send a uid since the desired
aggregation has already been done. To be able to do the
client-side aggregation the analytics scripts needs to have
access to computation and storage. Cliqz meets these re-
quirements since it is a browser, however, the same can be
achieved by any other analytics script.

3.1 A Privacy Preserving GA Clone
The current HTML5 standard allows for computation and

storage without violating Cross Scripting or Same Origin
Policies. Therefore, it is possible to create a GA-like tracking
script that operates only on client-side aggregation, without
side-effects. To demonstrate this we have build a prototype
of a GA clone that is able to collect data for a wide variety
of use-cases: 1) Unique visitors, both at site and page level.
2) Returning customers and retention. 3) Goal Conversion,
even across sites. 4) Cross-site correlations, 5) Intra-site
click-through patterns, and 6) Page loads and average time
spent on page by visitors.

A demo of the GA clone is available at http://site1.

test.cliqz.com/. Site owners can add the tracking agent
to their pages as,

<script> window.onload = function() { document.
getElementById("gt").contentWindow.postMessage(s,"
http://green-tracker.fbt.co");}</script>

<iframe id="gt" src="http://green-tracker.fbt.co/frame"
style="display: none;"/>

We encourage you to check the code of the green-tracker
tracking agent 4. This script – less than 200 lines with com-
ments and helpers removed – is able to satisfy all the afore-
mentioned use-cases without ever sending a uid. Inspection
of the code will reveal heavy usage of HTML5 localStor-

age, used to keep a consistent state of the user across all
the sites that contain the tracking script. A consistent user
state is only possible because the script is loaded as an 3rd
party iframe rather than as the typical 3rd party script.
Regardless of which site invokes the tracking script its con-
text will always be the origin, i.e. green-tracker.fbt.co,
therefore, the localStorage is consistent across all sites.
This would not be the case if the tracking script is loaded
using the script tag, since the origin would be the site it-
self, preventing us to aggregate the user’s activity. Run-
ning the tracking script on an iframe is also more secure,
since it is a sandboxed environment. Unlike the real GA
tracking script, our clone does not have privileges to access
the parent window; it is not possible for us to gather infor-
mation that is not explicitly allowed by the site owner us-
ing postMessage, adding control and transparency to both
site owners and users. The only potential drawback is that
localStorage can be inspected by whoever has physical ac-
cess to the users’s computer – the same goes for cookies.
Thus we must be careful of not creating a parallel history.
We address this issue by not storing long-term state as plain-
text but as truncated hashes. To sum up, the ability to

4view-source:http://green-tracker.fbt.co/frame

access the localStorage of the origin across multiple sites
makes the approach of client-side aggregation not only tech-
nically possible, but advisable given the multiple advantages
in security and privacy it provides.

3.2 Example: Goal Conversion Management
In this section we are going to demonstrate how the green-

tracker agent can measure goal completion without sending
a single uid to the data collector backend, hence, without
putting the user’s privacy at risk.

Let us define a goal signup as completed if a users visits
a thank-you page after seeing either an advertisement on a
page from the same site Internal Ads, or an advertisement
on a different site External Ads. Additional constraints for
the goal completion are that the time between when the ad
was clicked until signup must be shorter than 30 minutes,
and that the user should not have visited more than 4 other
pages in between. Additionaly, we define the goal to be a
one-time only, i.e. the goal can only be converted once per
user.

Goals in our system are defined in a similar fashion as in
other analytics services such as GA or Piwik. The goal is
sent to the cient via template. For the demo setup available
at http://site1.test.cliqz.com/ the template of the goal
signup is:

{"name": "signup",
"target": {

"url": "site4.test.cliqz.com/page-10.
html", // When a specific
location loads.

},
"referrer": [

{"url": "site5.test.cliqz.com/page-10.html
", "label": "external ad #1"}, //
Source of traffic

{"url": "site4.test.cliqz.com/page-9.html
", "label": "internal ad #1"}

],
"session_length": 30, // in minutes.
"pages_per_session": {

"max":"4",
"min":"1"

},
"allow_multiple_completions": false // Can be

true or false.
}

Name is the name of the goal; target is the goal URL;
referrer are the pages from the conversion funnel; ses-
sion length is the maximum time a user has to complete the
goal; pages per session is the max/min number of unique
pages that can be traversed before achieving the goal; and
allow multiple completions specifies if the goal can be
completed multiple times by the same user or not.

The process to check for a goal completion is activated
when the user loads a page containing the green-tracker
agent (for the case of the demo that means all pages from
all sites).

Let us use code snippets from the green-tracker agent to
explain the steps taken to validate a goal completion. First
of all, we need to keep a very short-term history of pages vis-
ited by the user, limited to pages less than 1 hour old and
capped to a maximum of 10 (must be values larger than ses-
sion length and pages per session.max respectively)5.

This how the history object is created and maintained:

5We must be careful of not keeping more history than

http://site1.test.cliqz.com/
http://site1.test.cliqz.com/
view-source:http://green-tracker.fbt.co/frame
http://site1.test.cliqz.com/

var history = JSON.parse(localStorage.getItem(’gt:
history’) || "[]");

history.unshift([url, timestamp]);
history = history.slice(0, 10);
var tooOld = -1;
for(var i=1;i<history.length;i++) {
if (gtUtils.timeDiffMinutes(timestamp, history[i][1])

> 60) {
tooOld = i;
break;

}
}
if (tooOld!=-1) history = history.slice(0, tooOld);
localStorage.setItem(’gt:history’, JSON.stringify(

history));

The aforementioned goal template is saved in the variable
campaignGoals, on which we iterate to check if the current
URL is one of the target URLs. For clarity we will assume
that all goals are kept on a list, which is not a very effi-
cient structure in a real case scenario because we can have
thousands of goals,

for(var i=0; i<campaignGoals.length; i++) {
var goal = campaignGoals[i];
var sessionTime = goal[’session_length’];
var minPagesPerSession = goal[’pages_per_session’][’

min’];
var maxPagesPerSession = goal[’pages_per_session’][’

max’];
}

we now need to check if this goal allows multiple comple-
tions, if not then ensure that this goal has not been already
achieved.

if (goal[’allow_multiple_conversions’] || (!goal[’
allow_multiple_conversions’] && !cache[gtUtils.
hashSHA1(goal[’name’])]))

Let us consider the case that the goal has not been achieved,
the next step is to check if the current url is one of the target
URLs.

if (goal[’target’][’url’]==history[0][0])

the goal specifies that the minimum pages per session is 1
and maximum is 4, therefore, we can clip the short-term
history and start iterating over it,

for(var j=1;j<Math.min(maxPagesPerSession, history.
length);j++)

because we have a temporal limit we only need to proceed
further if the pages in the short-term history are within the
session time,

var prev = history[j];
if (gtUtils.timeDiffMinutes(timestamp, prev[1]) <

sessionTime)

if the url in the short-term history url (currently iterated
upon) is one of the referrers in the goal then we conclude
the goal has been completed by the user.

if (goal[’sources’][z][’url’]==prev[0])

The next step is to create a key composed by the hash of the
goal name and stored in gt:cache_goals so that the same
goal is not reported twice,

strictly necessary because an attacker with physical access
to the browser can read from the LocalStorage

cache[gtUtils.hashSHA1(goal[’name’])] = true;
localStorage.setItem(’gt:cache_goals’, JSON.stringify(

cache));

The final step is to issue the message to the green-tracker
backend with the information about the goal completion,

dataToSend.push({ts: timestamp, type: ’goal’, ’name’:
goal[’name’], ’p’: lab}

The message sent will look like this,

{
"ts": "201604081234",
"type": "goal",
"name": "signup",
"p": "http://site4.test.cliqz.com/page-9.html

internal ad #1"
}

Note that no information about the user has been ever
sent. The goal completion has been calculated entirely in the
user’s browser and the final message contains no data that
jeopardize the user’s privacy. To count goal completions the
backend only needs to count how many messages of type
goal has received. The backend can segment by time, by
goal, by source, etc. This kind of aggregation is allowed,
only users’ data aggregation is not allowed, or to use a better
word, not possible because the users’ data never reaches the
backend.

We could use the same code snippets to calculate goal
completion using conventional server-side aggregation, like
GA does. The only difference – albeit a critical one – is
that the short-term history of the user would have to be
available on the backend, putting the user’s privacy at risk.
A big risk, specially since it can avoided by using client-side
aggregation.

One last thing to consider is that campainGoals should
not be kept as plain text, because that would mean than any
user can see which campaigns are being run; this can raise
some concerns among companies running those campaigns
because they could monitor each other. This problem, which
some would call a feature in favor of transparency, can be
easily solved. Both ‘target’ and ‘referrers’ can be truncated
hashes, so that the urls are obfuscated to all but the owner
of the goal. Furthermore, the labels that contain customer
specific information can be replaced by ids to be resolved at
collection time in the server-side.

4. CONCLUSIONS
To achieve real privacy preservation we must redesign the

data collection process to avoid server-side aggregation on
user’s data, which goes against the standard mode of opera-
tion. Fortunately there are alternatives. Cliqz collects data
using client-side aggregation only, hence, preserving the pri-
vacy of its users. In this talk we would like to showcase that
Cliqz’s approach can be generalized to other use-cases. To
demonstrate it we provide a working prototype of a Google
Analytics clone in which data collection does not produce
side-effects with regards to privacy.

5. REFERENCES
[1] K. Modi and J. M. Pujol. Collecting user’s data in a

socially-responsible manner. In European Big Data
Conference. Linux Foundation, 2015.

[2] Z. Yu, S. Macbeth, K. Modi, and J. M. Pujol. Tracking
the trackers. In In Proceedings of the 25th ACM
International Conference on World Wide Web, 2016.

	Introduction
	Side-Effects are Unavoidable
	An Alternative Approach
	A Privacy Preserving GA Clone
	Example: Goal Conversion Management

	Conclusions
	References

