

High-Dimensional
Nearest Neighbor Search

High-Dimensional Nearest Neighbor Search

● Who?

– About Cliqz and me

● What?

– Problem statement

● Why?

– Applications

● How?

– Exact solutions in low dimensions

– Approximate solutions in high
dimensions

Who? – Cliqz and Me

● Cliqz

– Builds privacy-focused browsers

– Manages its own search index

● Me

– Erik Larsson

– Software engineer

– Search backend

– Almost 2 years at Cliqz

What? – Problem Statement

● Data (D):

– Many vectors (millions or billions)

● Input (Q):

– One query vector (not necessarily
from D)

● Output:

– The k vectors from D that are
closest to Q

Why? – Applications

● Reverse image search

– Represent image by a vector

– Pixel values arranged in a vector

– More advanced features (SIFT,
SURF, ORB)

– Similar vectors ↔ similar images

[245, 245, 242, ...]

Why? – Applications

● kNN classification

– Input data with known labels

– Represent input objects by vectors

– Assign new unseen object the label
of its k nearest neighbors

– Regression

● Fast and simple baseline

Why? – Applications

● Plant classifier

– Map images of plants to vectors

– Do a NN lookup with an unknown
query image

– Assign label of closest vector(s)

Why? – Applications

● Similar queries at Cliqz

– Answer new, unknown queries by
considering similar, known queries

– Queries with different phrasing but
similar meaning

– Map query to vector (word2vec, tf-
idf vectors)

– NN-lookup

– Map back to queries

How? – Exact Solutions

● Linear scan

– Conceptually easy

– No extra space for index

– Slow

● Spatial partitioning

– Divide space into disjoint subsets

– Divide and conquer

v0 v1 v2 v3 v4 v5 v6 ... vN

q

● Kd-tree

– Binary tree

– Each node splits the space with half
of the vectors on each side

– Search by traversing tree from root
down to leaf

● Ball tree

– Similar to Kd-tree

– Cover space with “balls” containing
all points within a specific radius

How? – Spatial Partitioning

● 100-1000 dimensions

● Curse of dimensionality

– Many methods scale poorly as the
dimension increases

– Considering one coordinate at a
time is no longer enough

● Splitting random data with a plane

– In 2d/3d most vectors end up
reasonably far away from the plane

– In 100d most vectors end up pretty
close to the plane

How? – High-Dimensional Vectors

How? – High-Dimensional Vectors

● Ways forward

– Same algorithms, slower

– Something more clever/complicated

– Make the problem simpler

How? – High-Dimensional Vectors

● Ways forward

– Same algorithms, slower

– Something more clever/complicated

– Make the problem simpler

● Return vectors that are pretty
close

How? – Approximate Solutions

● Annoy – Approximate nearest neighbors oh
yeah

– A forest of kd-trees with non-axis-aligned
splitting planes

– Search in all trees simultaneously

– Search parameter decides how many
nodes are visited

– Nice UI (C++ with python bindings)

– Used by Spotify for music
recommendations

– Previously used at Cliqz for similar queries

– https://github.com/spotify/annoy

https://github.com/spotify/annoy

How? – Approximate Solutions

● Proximity graph

How? – Approximate Solutions

● HNSW – Hierarchical Navigable-Small
World

– Graph-based: layers of proximity
graphs (similar to skip list)

– Greedy search in each layer

– Elements inserted one by one by
searching in so far constructed index

– Yu. A. Malkov and D. A. Yashunin:
Efficient and robust approximate
nearest neighbor search using
Hierarchical Navigable Small World
graphs

How? – Approximate Solutions

● granne – graph-based retrieval of
approximate nearest neighbors

– Based on HNSW

– Optimized index construction

– Hybrid RAM/disk usage

– Index billions of vectors

– Rust with python bindings

– Used in the Cliqz search backend to
serve similar queries

– https://github.com/herrerik/granne

https://www.interglot.com/dictionary/sv/en/search?q=granne

Recapitulation

● The (Approximate) Nearest
Neighbor Problem has many
interesting applications.

● A few fundamentally different
methods

● Best methods depends on
dimensionality, data size and
structure

High-Dimensional
Nearest Neighbor Search

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

