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● Who?

– About Cliqz and me

● What?

– Problem statement

● Why?

– Applications

● How?

– Exact solutions in low dimensions

– Approximate solutions in high 
dimensions



Who? – Cliqz and Me

  

● Cliqz

– Builds privacy-focused browsers

– Manages its own search index

● Me

– Erik Larsson

– Software engineer

– Search backend

– Almost 2 years at Cliqz



What? – Problem Statement

  

● Data (D): 

– Many vectors (millions or billions)

● Input (Q):

– One query vector (not necessarily 
from D)

● Output:

– The k vectors from D that are 
closest to Q



Why? – Applications

  

●  Reverse image search

– Represent image by a vector

– Pixel values arranged in a vector

– More advanced features (SIFT, 
SURF, ORB)

– Similar vectors ↔ similar images

[245, 245, 242, ...]



Why? – Applications

  

●  kNN classification

– Input data with known labels

– Represent input objects by vectors

– Assign new unseen object the label 
of its k nearest neighbors

– Regression

● Fast and simple baseline



Why? – Applications

  

● Plant classifier 

– Map images of plants to vectors

– Do a NN lookup with an unknown 
query image

– Assign label of closest vector(s)



Why? – Applications

  

● Similar queries at Cliqz

– Answer new, unknown queries by 
considering similar, known queries

– Queries with different phrasing but 
similar meaning

– Map query to vector (word2vec, tf-
idf vectors)

– NN-lookup

– Map back to queries



How? – Exact Solutions

  

● Linear scan

– Conceptually easy

– No extra space for index

– Slow

● Spatial partitioning

– Divide space into disjoint subsets

– Divide and conquer

v0 v1 v2 v3 v4 v5 v6 ... vN

q



  

● Kd-tree

– Binary tree

– Each node splits the space with half 
of the vectors on each side

– Search by traversing tree from root 
down to leaf

● Ball tree

– Similar to Kd-tree

– Cover space with “balls” containing 
all points within a specific radius

How? – Spatial Partitioning



  

● 100-1000 dimensions

● Curse of dimensionality

– Many methods scale poorly as the 
dimension increases

– Considering one coordinate at a 
time is no longer enough

● Splitting random data with a plane

– In 2d/3d most vectors end up 
reasonably far away from the plane

– In 100d most vectors end up pretty 
close to the plane

How? – High-Dimensional Vectors



How? – High-Dimensional Vectors

  

● Ways forward

– Same algorithms, slower

– Something more clever/complicated

– Make the problem simpler



How? – High-Dimensional Vectors

  

● Ways forward

– Same algorithms, slower

– Something more clever/complicated

– Make the problem simpler

● Return vectors that are pretty 
close



How? – Approximate Solutions

  

● Annoy – Approximate nearest neighbors oh 
yeah 

– A forest of kd-trees with non-axis-aligned 
splitting planes

– Search in all trees simultaneously

– Search parameter decides how many 
nodes are visited

– Nice UI (C++ with python bindings)

– Used by Spotify for music 
recommendations

– Previously used at Cliqz for similar queries

– https://github.com/spotify/annoy

https://github.com/spotify/annoy



How? – Approximate Solutions

  

● Proximity graph



How? – Approximate Solutions

  

● HNSW – Hierarchical Navigable-Small 
World

– Graph-based: layers of proximity 
graphs (similar to skip list)

– Greedy search in each layer

– Elements inserted one by one by 
searching in so far constructed index

– Yu. A. Malkov and D. A. Yashunin: 
Efficient and robust approximate 
nearest neighbor search using 
Hierarchical Navigable Small World 
graphs



How? – Approximate Solutions

  

● granne – graph-based retrieval of 
approximate nearest neighbors

– Based on HNSW

– Optimized index construction

– Hybrid RAM/disk usage

– Index billions of vectors

– Rust with python bindings

– Used in the Cliqz search backend to 
serve similar queries

– https://github.com/herrerik/granne

https://www.interglot.com/dictionary/sv/en/search?q=granne



Recapitulation

  

● The (Approximate) Nearest 
Neighbor Problem has many 
interesting applications.

● A few fundamentally different 
methods

● Best methods depends on 
dimensionality, data size and 
structure
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